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1. Introduction

In the crust, fractures/faults can provide preferential pathways for fluid flow or act as barriers pre-
venting the flow across these structures. In hydrothermal systems (usually found in fractured rock
masses), these discontinuities may play a critical role at various scales, controlling fluid flows and heat
transfer. The thermal convection is numerically computed in 3D fluid satured isotropically fractured
porous media. Fractures are 2D convex polygons randomly located in a porous matrix. The fluid is
assumed to satisfy 2D and 3D Darcy’s law in the fractures and in the porous medium, respectively.

Flow equations are written in a quasi-steady approximation without phase changes and the density
of the fluid is supposed to be constant except in the body force term (the Boussinesq approximation).
A mass conservation equation and Darcy law describe the flow in porous matrix and in fractures

∇ · v̄ = 0, v̄ = − 1
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μ
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where P is pressure, v̄ seepage velocity, ρF fluid denisity, μ = 103 Pa.s viscosity, g = 9.81 m/s2 gravity
acceleration, K = 10−11 m2 bulk permeability, σf = b3/12 = 8.33 · 10−11 m3 fracture transmissivity,
b = 10−3 m fracture aperture. ∇S two–dimensional gradient operator in a fracture plane, q flow rate
per unit width, n unit normal vector to the fracture and [f ] jump in f between two sides of the fracture.

The energy balance equations in matrix and in fractures read
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where cF = 4.2 · 103 and cs = 0.9 · 103 J/kg K are specific heat capacities (fluid and solid phase),
λm = 2.9 W/m K effective conductivity of porous medium, T and Tf are temperatures of saturated
porous medium and of fluid in fractures, respectively, ε = 0.1 porosity, ρs = 3 · 103 kg/m3 solid matrix
density, Λ = bλF = 0.6 · 10−3 W/K fracture thermal transmissivity, λF =0.6 W/m K fluid thermal
conductivity. Fluid density varies with temperature ρF = ρ0 [1− αF (T − T0)]. with thermal coefficient
of volume expanson αF = 2.07 · 104 K−1, ρ0 = 103 kg/m3.

A bounded cubic three-dimensional volume L3 of porous fractured medium is heated from below.
The vertical boundaries are adiabatic and impermeable. The bottom of the box is impermeable while
the top could be impermeable or permeable. In open-top cases, a constant pressure P0 is imposed, while
in closed-top cases a no-flow boundary condition is used. A constant temperature T0 is imposed at the
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top of the box; temperature at the bottom is fixed at T0+ΔT . In most cases the simulations start from
a homogeneous temperature field and immobile fluid. The Rayleigh and Nusselt numbers

Ra =
αF ρ

2
0cF gΔTKL

μλm
, Nu =

QT

λmLΔT
(4)

characterize the system; here QT is thermal flux in z-direction through the unit cell.
Simulations have been performed with fracture networks made of squares circumscribed by disks of

radius R = L/5. Network densities are characterized by ρ′ = NfVex/L
3 [1]. Fractures are inserted in the

porous matrix according to the procedure detailed by [1]. The finite volume method and unstructured
grids with discretization δm = R/6 are used in order to solve the flow and energy transport equations
[2]. A variant of flux–corrected method and a time implicit, first order discretization are applied. The
Rayleigh number in the porous matrix is the same in every simulation, Ram=41.5.

2. Results

Vertical cross sections in Fig. 1a-c demonstrate the temperature field for various fracture transmis-
sivities. For σ′ = 0.1 (Fig. 1a) the presence of fractures does not perturb the system. When σ′ increases,
a 3D convective behavior develops. The strength of the convection increases with σ′, as it can be seen
in Fig. 1d that shows the Nu as a function of σ′.
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Figure 1: Temperature fields at steady state for σ′ = 0.1 (a), 5 (b) and 10 (c), and Nu as a function of σ′ (d) for Ram =
41.5. Data are for ρ′ = 4 in (a-c) and for ρ′ = 1 (red symbols) and 4 (black symbols), in (d).

The intensity of convection increases also with ρ′ (Fig. 2). One can observe in Fig. 2a-c a thinning
of the upflowing plume when ρ′ incrases. Nusselt number Nu grows with ρ′ almost linearly (Fig. 2d).
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Figure 2: Temperature fielsd at steady state for ρ′ = 4 (a), 6 (b) and 10 (c), and Nu as a function of ρ′ (d) for Ram =
41.5 and σ′ = 1. Data points in (d) are averages over 15 relizations, error bars correspond to standard deviations.

The results of simulations in fractured porous media have been compared with those performed for
the porous media with effective transport characteristics. Effective permeability Keff is evaluated and
then substituted as permeability of the medium without fractures. The corresponding effective thermal
conductivity is found not to differ significantly from the matrix one and the latter value is used.

It has been observed that when Nupor in corresponding effective porous medium is low (≤ 2),
the effective approach gives good results, that is Nufr in fractured porous medium does not differ
significantly from Nupor. However, when Nupor increases, for more and more realizations Nufr deviates
from Nupor by about 25%. The difference between the results of simulations in fractured media and
those in effective ones is maximal for densities 2 < ρ′ < 5, i.e. roughly near the percolation threshold
ρ′= 2.3. The effective approach is in agreement with the discretely fractured approach for very low and
very high densities of fractures.
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